Sylvy’s weekly puzzle #4

Cross-reference to puzzle page on my website

This is an old one, but good fun.

Sylvy’s weekly puzzle #4

Let \mathcal{P}(\mathbb{N}) denote the powerset of the natural numbers. For clarity, we will consider 0 to be a natural number. Then the pair


is a partial order: the (weak) ordering is reflexive, antisymmetric, and transitive. But it is very definitely not a total order: given X,Y\in\mathcal{P}(\mathbb{N}) we may have neither X\subseteq Y nor Y\subseteq X. A chain is a subset \mathcal{C} of \mathcal{P}(\mathbb{N}) on which \subseteq is a total order. For example:


is a chain, but note that \mathcal{C}_{0} is countable.

This week’s problem is to find an uncountable chain, that is a subset \mathcal{C} of \mathcal{P}(\mathbb{N}) which is totally ordered by \subseteq and uncountable.

Deadline: 10am Thursday 5th of November

(you can either send your solution by email or put a hand-written solution into the folder on my office door)

Prize: I’m very please to anounce that the winner will get a book of mathematical puzzles!!

Solution class: there will be a class at 10am on Thursday 5th of November in my office to go over the solution to this puzzle.

The webpage for these puzzles is

Have fun!