Sylvy’s Weekly Puzzle #3, Solution (part II)

Cross-reference to puzzle page on my website

In this post I want to carry on discussing the solution to puzzle #3. Recall that \mathcal{S} denotes the world that Sonic explores in the `Special Stage’. We are thinking of \mathcal{S} as a topological space, upto topological equivalence.

We have already taken a look at the cases of the sphere and the torus, and we had shown that \mathcal{S}  cannot be a sphere and that \mathcal{S} could be a torus. In fact we saw the `map’ of the level: so it really IS a torus! But the question is: `what can we say about \mathcal{S} using only the topological information that sonic can gather?’

The final part of puzzle #3 asked us to see if \mathcal{S} could be a Klein Bottle. A Klein bottle is the topological space obtained by taking a square and gluing together the opposite edges, as in the following diagram on the left. Note that the blue pair are glued together with a twist, while the red pair are glued `straight’.

Gluing the edges of a square to form a Klein Bottle

Well, the answer is `yes’. Let m,n\in\mathbb{N} be such that m is even and n is odd. Let C be a  rectangle which is divided into an m\times n chessboard, coloured as usual so that white squares and black squares alternate. I think of the `bottom’ or `horizontal’ edges as being m-squares long, and the `side’ or `vertical’ edge as being n-squares long. Below on the right is a picture for the case m=5,n=6.

even-by-odd chessboard
even-by-odd chessboard

Gluing the edges of this chessboard together in the way described above results in a Klein bottle which is tiled in the usual `alternating black and white’ pattern that Sonic sees all around him. This shows that \mathcal{S} could be a Klein bottle.

Note that we’ve only taken into account topological information. In later posts I want to tackle the `geometric’ question.

Advertisement

Please leave a reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s